Regularity of solutions of the fractional porous medium flow with exponent 1/2
نویسندگان
چکیده
We study the regularity of a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is ut = ∇·(u∇(−∆)−1/2u). For definiteness, the problem is posed in {x ∈ RN , t ∈ R} with nonnegative initial data u(x, 0) that are integrable and decay at infinity. Previous papers have established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation, as well as the boundedness of nonnegative solutions with L1 data, for the more general family of equations ut = ∇ · (u∇(−∆)−su), 0 < s < 1. Here we establish the Cα regularity of such weak solutions in the difficult fractional exponent case s = 1/2. For the other fractional exponents s ∈ (0, 1) this Hölder regularity has been proved in [5]. The method combines delicate De Giorgi type estimates with iterated geometric corrections that are needed to avoid the divergence of some essential energy integrals due to fractional long-range effects. ∗University of Texas; [email protected] †Universidad Autónoma de Madrid; [email protected]
منابع مشابه
Recent progress in the theory of Nonlinear Diffusion with Fractional Laplacian Operators
We report on recent progress in the study of nonlinear diffusion equations involving nonlocal, long-range diffusion effects. Our main concern is the so-called fractional porous medium equation, ∂tu + (−∆)(u) = 0, and some of its generalizations. Contrary to usual porous medium flows, the fractional version has infinite speed of propagation for all exponents 0 < s < 1 and m > 0; on the other han...
متن کاملMagnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium
The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...
متن کاملElectro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملAnalytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid
In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...
متن کاملRegularity of weak solutions of the Cauchy problem to a fractional porous medium equation
This paper concerns the regularity of the weak solutions of the Cauchy problem to a fractional porous medium equation with a forcing term. In the recent work (Fan et al. in Comput. Math. Appl. 67:145-150, 2014), the authors established the existence of the weak solution and the uniqueness of the weak energy solution. In this paper, we show that the every nonnegative bounded weak energy solution...
متن کامل